
 
 

1 
 

Modelling the Impacts of Land Use on Transit Utilization in the Central Okanagan 1 
 2 
 3 
 4 

 5 
 6 
Md. Nobinur Rahman* 7 
MASc. Candidate 8 
School of Engineering  9 

Faculty of Applied Science, University of British Columbia 10 
EME 4222 - 3333 University Way, Kelowna, BC V1V 1V7, Canada 11 
Email: nobinur.rahman@alumni.ubc.ca 12 
 13 

 14 

Cameron Taylor-Noonan 15 
M.A. Candidate 16 
School of Community and Regional Planning 17 

Faculty of Applied Science, University of British Columbia 18 
433 - 6333 Memorial Road, Vancouver, BC, V6T 1Z2 19 
Email: ctaylornoonan@gmail.com 20 

 21 
 22 

Ahmed O. Idris, Ph.D., P.Eng. 23 
Assistant Professor 24 
School of Engineering, University of British Columbia  25 

EME 4242 - 3333 University Way, Kelowna, BC V1V 1V7, Canada 26 

Tel: (250) 807-9809 27 
Fax: (250) 807-9850 28 
Email: ahmed.idris@ubc.ca 29 

 30 
 31 

Rafael Villarreal, P.Eng., MCIP, RPP 32 
Regional Planning Manager 33 

City of Kelowna and Sustainable Transportation Partnership of the Central Okanagan 34 
1435 Water Street, Kelowna, BC, V1Y 1J4 35 
Tel: (250) 469-0404 36 
Fax: (250) 862-3312  37 

Email: rvillarreal@kelowna.ca 38 
 39 
 40 

 41 
 42 
 43 
 44 
 45 

                                                           
*
 Corresponding author 

mailto:nobinur.rahman@alumni.ubc.ca
mailto:(250)%20807-9809
mailto:ahmed.idris@ubc.ca
mailto:rvillarreal@kelowna.ca


 
 

2 
 

Abstract 1 
Transit and land use have an intertwined relationship that has been researched for many years; 2 
however, this relationship remains abstract and hard to capture. Transit-land use relationship is 3 
often described as a chicken-and-egg problem of a two-way nature. By providing suitable access 4 

(egress) to (from) transit, land use affects transit utilization and condition transit demand. On the 5 
other hand, by ensuring mobility between trip origins and destinations, transit affects land use 6 
and condition the spatial distribution of activities and urban development. Much of the 7 
complexity in transit-land use interactions can be attributed to passengers’ perceptions of various 8 
level-of-service and land use factors. It is therefore important to understand such underlying 9 

aspects in order to manage the interrelationship between transit and land use. This study explores 10 
the relationship between various land use factors and transit mode choice/ridership in the Central 11 
Okanagan using two approaches, namely, mode choice and direct ridership modelling. The first 12 
method utilizes a trip diary survey and discrete choice modelling to analyze mode choices based 13 

on the location of activities and land use patterns. The second method uses a direct ridership 14 
model approach that uses spatial analysis and correlations between transit ridership, stop 15 

locations and surrounding quantified land uses. As an input for both methods, land use is 16 
quantified and defined as number of jobs, school enrolment, and population at a fine-scale (lot 17 

level). 18 
 19 
 20 
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Introduction 1 
In 2013, public transit accounted for 4.8% of all trips in Kelowna, BC. Although it is still a small 2 
share, 4.8% represents more than double Kelowna’s transit modal share in 2007. In Kelowna, 3 
transit is looked at as a means of travel that can help alleviate traffic congestion and reduce 4 

greenhouse gas emissions. As such, the City of Kelowna has committed millions of dollars for 5 
improving transit infrastructure and amenities. Nevertheless, to prioritize and best allocate future 6 
transit investments, it is imperative to study the factors that influence transit utilization.  7 
 8 
Research has shown a strong association between transit mode choice/ridership and land use 9 

(Kemp et al. 1997; Polzin 1999; Guiliano 2004). In spite of the clear recognition of the effect of 10 
various land use factors on transit mode choice and ridership, this relationship remains abstract 11 
and hard to capture.  12 
 13 

In general, there are two approaches to capture the effect of land use on transit utilization. The 14 
first is to develop mode choice models to predict travellers’ choices at the personal level. The 15 

second is to develop designated transit ridership models to forecast boardings and alightings at 16 
the stop level. Mode choice modelling has received a lot of attention in the field of transportation 17 

planning given its ability to predict individuals’ choices in response to policy changes (Bhat 18 
1998; Anggraini et al. 2012). By aggregating individuals’ choices, transit modal share can be 19 
collectively estimated at the city or the regional level. While useful in estimating aggregate 20 

transit modal share, there are several factors that make it difficult for mode choice models to 21 
obtain reliable transit ridership forecasts. For example, traditional mode choice models do not 22 

adequately account for important land use factors that affect transit ridership. Further, in cases 23 
where land use information is incorporated into mode choice models, such data is usually 24 
collected at the Traffic Analysis Zones (TAZs) level which implies that the characteristics of 25 

land use are uniform within the same TAZ. This unrealistic assumption leads to mode choice 26 

models being inaccurate in estimating transit ridership at the stop level (Zhao et al. 2002; Taylor 27 
and Fink 2003). Moreover, because of lack of appropriate behavioural data, mode choice models 28 
are unlikely developed for small cities and rural communities dominated by the automobile as a 29 

mode of travel. Alternatively, direct ridership models are useful for identifying key land use 30 
factors for transit utilization and ridership estimation at the stop level. Ridership models are 31 

typically based on linear regression. As such, they are much simpler to develop and do not 32 
require a large amount of data collection (Horowitz 1984; Boyle 2006; Cardozo et al. 2012). 33 

However, it could be argued that the relationship between transit ridership and land is not linear. 34 
 35 
Earlier studies have looked at mode choice and transit ridership separately using mode choice 36 
and direct ridership models, respectively. It is clear that both approaches have potential for error; 37 

however, combining them might provide more insights into the role of various land use variables 38 
in altering transit utilization. Unlike previous studies, this paper explores the relationships 39 
between land use factors (quantified as the density of population, employment, and enrolment) 40 

and transit utilization in the City of Kelowna, using a twofold approach. First, using the discrete 41 
choice modelling approach, the influence of land use on human decision-making is investigated 42 
at the personal level. Second, a direct ridership model is developed using linear regression. 43 
Comparing results from both approaches allowed for a better understanding of the trade-offs and 44 
synergies between land use factors and transit utilization, and among the land use factors 45 
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themselves. As an input for both methods, land use is defined in terms of population, number of 1 

jobs, and school enrolment quantified at a fine-scale (lot level). 2 
 3 

Literature Review 4 
Over the years, the concept of travel as a “derived demand” has been accepted as a fundamental 5 
tenet of transportation research. This means that travel is a burden undertaken by travellers to 6 
engage in activities that require physical presence in space and time, not for the sake of travel per 7 
se (Meyer and Miller 2001). As such, transportation demand models assume that travel-related 8 
choice processes (e.g. destination choice, mode choice, route choice, etc.) involve an associated 9 

utility (disutility) to be maximized (minimized) by travellers (McFadden 2000; Mokhtarian and 10 
Salomon 2001). As generally defined, utility is a measure that reflects one’s satisfaction from 11 
undertaking a particular trip between an origin and a destination using a certain mode on a 12 
particular route. Extensive academic literature has looked at the intricacies of travel-related 13 

choices and suggested many ways to define and measure travellers’ utilities (Ben-Akiva and 14 
Lerman 1985; Ben-Akiva and Bierlaire 1999; Ortuzar and Willumsen 2011). 15 

 16 
Continuously, individuals make decisions, some of which may be considered once in a lifetime 17 

and others of which are being made on daily basis. For example, one may make decisions about 18 
where to live and work (or go to school), where to pursue various activities (e.g. shopping, 19 
social, recreational, errands, etc.), and which mode and route to take for travel. The decision-20 

making process underlying mode choice decisions is complex and depends on many different 21 
factors. Such factors encompass characteristics of the travellers (who make choices), the land use 22 

system (where activities are located and organized), and the transportation system including 23 
different modes of travel (through which activities are linked). According to (Kemp et al. 1997), 24 
the mode choice process is best described as a hierarchy of interrelated choices that progress 25 

from macro lifestyle choices (e.g. home location ,work location, vehicle ownership, etc.) to 26 

micro mode choices (e.g. car, transit, cycle, walk, etc.) for specific trip purposes (e.g. work, non-27 
work, etc.). This implies that the micro mode choice decisions of individuals, which collectively 28 
determine transit modal share, are the result of a broad range of long- and short-term hierarchical 29 

choices. 30 
 31 

At the “macro” end of the spectrum, various land use factors work to influence transit mode 32 
choice decisions. Research has shown that population and employment densities are the most 33 

important land-use predictors of transit mode choice (Kockelman 1995; Cervero 2004). This 34 
finding is further supported by (Chatman 2008) who found an inverse relation between 35 
automobile use and activity density defined as the number of local desirable non-work activity 36 
locations. In addition to density, having a rich mix of activities (also known as diversity) is key 37 

to transit mode choice decisions (Dittmar and Poticha 2004). People can complete a number of 38 
activities in one transit trip (i.e. trip chaining) if different activities are located within walking 39 
distances at destination. Therefore, the pattern and location of activities, and the distance 40 

between them, are important considerations for transit mode choice.  41 

 42 
Direct ridership models differ from mode choice models in that they only consider the aggregate 43 
demand at a node on the transit network rather than the attributes of individual trips. For the 44 
purpose of forecasting ridership, direct ridership models offer much greater spatial resolution 45 
than a traditional mode choice model. In addition, given that they are based on linear regression, 46 
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they are much easier to implement than microsimulation. While these simple models cannot 1 

replace more sophisticated approaches, they can still be useful for ‘sketch planning’ or the 2 
preliminary assessment of alternatives (Upchurch and Kuby 2014). Table 1 shows results from a 3 
sample of studies using linear regression for direct ridership forecasting indicating the number of 4 

independent variables used and the overall goodness of fit. 5 
 6 

Table 1. Results from Studies Using Linear Regression 7 

Region Independent Variables R-Squared 

Jacksonville  

(Chu) 

15 0.54 

San Diego  

(Ryan & Frank) 

7 0.33 

Oregon  

(Schlossberg et al.)* 

19 0.53 

                                *Schlossberg et al. estimated three separate models. The one presented in this 8 
                                 table is for Medford, OR, and was chosen because of its similarity to Kelowna. 9 
 10 
The independent variables commonly used for direct ridership models in the literature can be 11 

divided into three categories: attributes of the stop and its position within the network, the built 12 
environment surrounding the stop, and the demographics of nearby residents. The level of transit 13 
service is often captured by the number of buses per day, average headway, amenities at the stop 14 

(such as a shelter or park and ride spots), number of connecting routes (termini and transfer 15 

points tend to have higher ridership), or the percentage of regional employment accessible within 16 
a given time (Schlossberg et al. 2013). Built form is operationalized through measures of density, 17 
diversity, and design: from more macroscale counts of population and employment (Cervero et 18 

al. 2010) to microscale features of the pedestrian environment (Chu 2004; Ryan and Frank 19 
2009). Common demographic variables include age, income, vehicle ownership, and ethnicity 20 

(Pulugurtha and Agurla 2012).  21 
 22 
One of the main challenges for direct ridership models is how the connection between transit 23 
service and demand is treated. On one hand, more frequent service may generate higher rates of 24 

ridership irrespective of nearby land use; on the other, areas with transit supportive land uses 25 
tend to have more service during off-peak hours, which might drive the daily per trip average 26 
down. Since transit agencies take demand into consideration when determining the transit 27 

supply, including transit service variables in a regression model could lead to biased estimates of 28 
their impact on ridership (Kerkman et al. 2015). Conversely, excluding transit service could 29 
exaggerate the effects on the built environment on bus patronage. This paper indirectly considers 30 
transit service by normalizing the dependent variable (daily boardings and alightings) by the 31 

number of buses serving the stop per day. 32 
 33 
 34 
 35 
 36 
 37 
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Table 2. Common Variables in Direct Bus Ridership Models in North America 1 

Region 
Dependent 

Variable 

Built 

Environment 
Transit Service Demographics 

Jacksonville  

(Chu) 

Boardings Count of 

population 

Count of 

employment 

Pedestrian factor 

Transit level 

of service 

Age 

Income 

Ethnicity 

Gender 

Vehicle Ownership 

San Diego  

(Ryan & Frank) 

Boardings + 

Alightings (log) 

Walkability index Average 

waiting time 

Age 

Income 

Ethnicity 

Vehicle Ownership 

Los Angeles 

(Cervero et al.) 

Boardings on 

BRT 

Population density 

Employment 

density 

Daily buses 

Number of 

feeder buses 

NA 

Charlotte 

(Pulugurtha & 

Agurla) 

Boardings Area residential 

Area commercial 

Speed limit 

Presence of median 

NA Income 

Ethnicity 

Vehicle Ownership 

Oregon  

(Schlossberg et al.) 

Boardings + 

Alightings (log) 

Land use mix 

Distance to CBD 

Job accessibility 

Average headway 

Age 

Income 

Education 

Ethnicity 

Vehicle Ownership 

Final model variables for stop level ridership in North America. Adapted from Kerkman et al. (2015). 2 
 3 

Datasets and Preliminary Analysis 4 
The City of Kelowna is selected as a case study for this investigation. Kelowna is the largest city 5 
in British Columbia’s Okanagan Valley and is home to 123,500 people (City_of_Kelowna 2015). 6 
Various sources of data were used in this study. Transit ridership data for September 2014 was 7 

obtained from BC Transit, based on Automatic Passenger Counters (APC) for conventional 8 
routes and manual counts for community shuttles. A log transformation is applied to correct for 9 
the highly skewed distribution of ridership per trip. Information on mode choice, trip length, 10 
duration, purpose, etc. was obtained from the 2013 Okanagan Travel Survey, the most recent 11 

household-based trip diary survey that was conducted in fall 2013 and covered a sample of 12 
residents of the Central Okanagan and the City of Vernon. Land use data was quantified at the 13 
parcel level by combining information from census, BC Assessment, Canada Business Points, 14 

and enrolment counts from Central Okanagan School District (SD23) among other sources. The 15 
resulting estimates of population, employment, and enrolment at each parcel were used to 16 
generate the ‘activity surface’ for the study area. Roadway intersection density was also 17 
calculated to provide an additional measure of urban form.  18 
 19 
A fine-scale lot level land use data was produced by dividing the study area into a 50×50 m grid. 20 
Raster models were built for density of population, employment, and enrolment using the Kernel 21 
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Density Function in ArcGIS 10. The area of Lake Okanagan was excluded in density 1 

calculations to prevent distorted results near shorelines. Furthermore, the value for activity at 2 
each cell in the grid was estimated by combining density of population, employment, and 3 
enrolment within a 400 metre radius in order to approximate the walkshed or service area of a 4 

bus stop. To move from the raster representation (continuous surface) to the vector one (discrete 5 
bus stops), each point was given the activity values of the grid cell they fell within, as shown in 6 
Figure 1.  7 
 8 

 9 

Figure 1. Overview of Method 10 

The final activity surface for the City of Kelowna, showing the density of population, 11 
employment, and enrolment per hectare is shown in Error! Reference source not found.. A 12 
general ‘hourglass’ pattern can be seen with concentrations of activity along the Highway 97 13 

corridor. The cluster of activity in the top right represents the UBC Okanagan campus. The 14 

resulting dataset was then used for all subsequent models (i.e. mode choice and ridership 15 
models). 16 

 17 

Figure 2. Density of activity (sum of population, employment, and enrolment) 18 

per hectare in the City of Kelowna 19 

 20 
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To check for multicollinearity between the independent variables, the relationships between the 1 

different components of activity (i.e. population, employment, and enrolment) were assessed. As 2 
shown in Error! Reference source not found., none of individual components of activity are 3 
significantly correlated with each other. This reflects a general lack of land use mix at a 4 

pedestrian scale in the Central Okanagan.  5 
 6 

Table 3. Correlations between Components of Activity 7 

 
Dwellings Population Employment Enrolment 

Dwellings 
    

Population 0.95 
   

Employment -0.01 -0.16 
  

Enrolment 0.00 -0.02 0.01 
 

                           n=578, bolded values are significant below p>0.05 8 
 9 

Next, correlations between the boardings and alightings per trip for each bus stop and the 10 

different components of activity were explored. The initial results are presented in Error! 11 
Reference source not found. below. There are significant positive correlations between the 12 
employment density, enrolment, and ridership; however, there is a slightly negative, though 13 

insignificant, relationship between population density and ridership. This counterintuitive result 14 
runs contrary to much of the established literature, but may be explained by the low variation in 15 

population density throughout the region. Half of the bus stop walksheds in the City fall within 16 
the range of 4 to 10 dwellings per hectare. If the individual bus network tiers (i.e. frequent versus 17 
local routes) are considered separately, there is a small positive correlation for dwelling density 18 

and boardings on the local transit network. Also absent is the relationship between intersection 19 

density and ridership which was found by (Ryan and Frank 2009). 20 
 21 

Table 4. Correlations between Walkshed Activity and Ridership 22 

 
Dwellings Population Employment Enrolment Activity Intersections 

Boardings 0.08 -0.02 0.44 0.31 0.51 -0.04 

Alightings 0.00 -0.10 0.40 0.25 0.42 -0.11 

Total 0.10 -0.01 0.48 0.29 0.54 -0.03 

    n=474, bolded values are significant below p>0.05 23 
 24 

One potential explanation for the null relationship between population density and ridership 25 
could be the overwhelming influence of stops at UBC Okanagan and Queensway Exchanges. 26 
Both are in the bottom quartile of nearby population density: yet they account for nearly a third 27 

of daily boardings and alightings. Table 5 shows the correlation results after excluding these 28 
outliers. Dwelling density becomes weakly correlated with ridership, and population is weakly 29 
correlated with boardings (p= 0.1). This discrepancy, particularly given the strong relationship 30 
between dwelling and population density (r= 0.95) shown in Table 3, suggests that dwelling 31 

density is a more reliable indicator of transit supportive land uses than population density in 32 
Kelowna, which is plausible given the wide range of household sizes among neighbourhoods of 33 
detached housing the city. 34 
 35 
 36 
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Table 5. Correlations between Activity and Ridership (Excluding UBCO and Queensway) 1 

 
Dwellings Population Employment Enrolment Activity Intersections 

Boardings 0.15 0.06 0.35 0.18 0.37 -0.07 

Alightings 0.06 -0.04 0.32 0.13 0.28 -0.13 

Total 0.18 0.07 0.41 0.16 0.41 -0.05 

    n=462, bolded values are significant below p>0.05 2 
 3 
To test whether the relationship between nearly population and ridership is stronger at higher 4 
densities, the process was repeated for bus stops above the median for population density (17 5 
persons per hectare). Similar results are observed: population density failed to reach significance 6 

at the 90% confidence level.  7 
 8 

Mode Choice and Ridership Modelling 9 
A sample of 12,052 all-purpose trips (representing a total of 368,081 trips) having both their 10 
origin and destination in Kelowna were extracted from the 2013 Okanagan Travel Survey.11 
To investigate the effect of various land use factors on travellers’ perception and transit mode 12 
choice behaviour at the personal level, two mode choice models were developed, as shown in 13 

Table 6.  14 
 15 

Model 1 accounts for the individual effect of population, employment, and enrolment densities 16 
(as indicators for the pattern and location of activities) on transit mode choice. In addition, the 17 
model is sensitive to the travel time and distance between activity locations. It seems that, the 18 

most important land use predictor of transit mode choice is enrolment density at both trip ends 19 
given its high magnitude and statistical significance. This might be related to the high percentage 20 

of students using public transit in Kelowna. The model also shows that population density at trip 21 
origin positively affect transit mode choice, and is more important than population density at trip 22 

destination. This can be observed from the positive parameter estimate associated with 23 
population density at origin, being lower in magnitude at trip destination. Ensuring higher 24 

population densities at trip origins increases transit mode choice and reduces automobile use. 25 
Interestingly, the model shows that employment density is of no importance to transit mode 26 
choice at both trip origin and destination given its low parameter value and being statistically 27 

insignificant.  28 
 29 

Model 2 accounts for the combined effect of the above mentioned variables (i.e. diversity or 30 

mixed land use) on transit mode choice. The model is also sensitive to the travel time and 31 
distance between activity locations. The model indicates that land use diversity is equally 32 
important for transit mode choice at both trip ends. In other words, transit mode choice is 33 

expected to increase on the expense of car use if a good mix of activities is concentrated around 34 
transit stops at both trip origins and destinations.  35 
 36 
 37 

 38 
 39 
 40 
 41 
 42 
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Table 6. Individual and Combined effect of 1 

Population, Employment, and Enrolment Densities on Mode Choice 2 

   
Model 1 Model 2 

Number of observations 11,837 11,837 

Null Log-Likelihood -13,004.274 -13,004.274 

Final Log-Likelihood -5,097.123 -5,180.927 

Rho-Square 0.608 0.602 

Variable Mode Coefficient t-stat Coefficient t-stat 

Alternative 

Specific Constant 

Auto Driver and Passenger Fixed --- Fixed --- 

Public Transit -4.010 -23.45 -4.740 -36.05 

Cycle and Walk -0.68 -7.62 -0.65 -8.76 

Population per 

Hectare at Origin  

Auto Driver and Passenger         

Public Transit 0.010 3.44     

Cycle and Walk 0.006 2.95     

Population per 

Hectare at 

Destination 

Auto Driver and Passenger         

Public Transit 0.006 2.15     

Cycle and Walk 0.006 3.17     

Employment per 

Hectare at Origin  

Auto Driver and Passenger         

Public Transit 0.002 1.25     

Cycle and Walk 0.003 3.81     

Employment per 

Hectare at 

Destination 

Auto Driver and Passenger         

Public Transit 0.0003 0.25     

Cycle and Walk 0.004 5.31     

Enrolment per 

Hectare at Origin  

Auto Driver and Passenger         

Public Transit 0.013 17.90     

Cycle and Walk 0.006 5.17     

Enrolment per 

Hectare at 

Destination 

Auto Driver and Passenger         

Public Transit 0.013 17.66     

Cycle and Walk 0.005 4.24     

Activity per 

Hectare at Origin  

Auto Driver and Passenger         

Public Transit     0.009 15.22 

Cycle and Walk     0.004 6.24 

Activity per 

Hectare at 

Destination 

Auto Driver and Passenger         

Public Transit     0.009 14.73 

Cycle and Walk     0.004 7.06 

Travel Time 
Auto Driver and Passenger -0.141 -9.1 -0.157 -10.6 

Public Transit -0.0352 -8.23 -0.0296 -7.1 

Travel Distance Cycle and Walk -0.864 -27.6 -0.883 -28.9 

 3 
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To investigate the effect of land use factors on transit ridership, direct ridership forecasting 1 

models were developed using linear regression. The models utilized stop level ridership data and 2 
nearby land use information. Boardings and alightings were investigated separately using a series 3 
of regression models to capture the effect of land use on transit ridership at trip origins and 4 

destinations explicitly. In each investigation, the first three models (Models 1a, 1b, and 1c) were 5 
a stepwise process where the components of activity were added sequentially to test their 6 
individual significance. The second direct ridership model (Model 2) included only the sum of 7 
activity per hectare for comparison. It appears that keeping the different components of activity 8 
separate leads to a significantly more predictive model than summing them into a single 9 

measure. 10 
 11 
As seen in Table 7 and Table 8, population per hectare has a null relationship with ridership, 12 
though the addition of employment and enrolment density significantly improved the 13 

explanatory power of the model. The models also show that employment density at both trip 14 
ends is the strongest land use predictor of transit ridership given its high magnitude and 15 

statistical significance. The previous findings appear to contradict the mode choice model where 16 
population density was a strong predictor of mode choice and density of employment was 17 

insignificant at both origin and destination. Given that mode choice models are more related to 18 
passengers’ behaviour, a possible explanation for this disagreement between the two models 19 
could be attributed to passengers’ perception of the qualities that entail population density (not 20 

population density per se). Research has shown that population density is not just related to 21 
population per unit area, but rather it is a comprehensive definition that reflects the versatile 22 

integration of urban structure and efficient use of the potential of a city (Khodabakhshi 2011). 23 
These qualities might be missing or even different in employment density. For example, one 24 
could argue that travellers associate high employment density with poor neighbourhood design 25 

and less social aspects compared to high population density (i.e. surrounded by offices vs. 26 

surrounded by people). Further investigation is required to determine whether this is an artefact 27 
of the model specification or possibly due to the urban form of Kelowna where many centres of 28 
employment lack a supportive pedestrian environment. 29 

 31 

Table 7: Results of Linear Regression (Log of Boardings Per Trip) 32 

 
Model 1a Model 1b Model 1c Model 2 

Variable Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 

Constant -1.1787 (14.21) -1.6026 (19.04) -1.6836 (21.06) -1.8419 (28.25) 

Population per Ha -0.0014 (0.44) 0.0037 (1.25) 0.0041 (1.45)*   

Emp. per Ha   0.0168 (10.77) 0.0167 (11.37) 
  

Enrolment per Ha   
  

0.0132 (7.80) 
  

Activity per Ha   
    

0.0140 (12.89) 

F-Value   116.01 60.78 
 

F-Value (2)    19.40  

R-Squared 0.0004 0.198 0.290 0.260 

n=474, bolded values are significant below p>0.05. *Value is approaching significance at p=0.15 (2) in comparison 33 
to Model 2 34 

 35 



 
 

12 
 

Table 8: Results of Linear Regression (Log of Alightings Per Trip) 1 

 
Model 1a Model 1b Model 1c Model 2 

Variable Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 

Constant -0.9097 (11.18) -1.2771 (15.07) -1.3429 (16.31) -1.5607 (22.98) 

Population per Ha -0.0069 (2.16) -0.0024 (0.81) -0.0021 (0.75)   

Emp. per Ha   0.0146 (9.27) 0.0145 (9.58) 
  

Enrolment per Ha   
  

0.0107 (6.15) 
  

Activity per Ha   
    

0.0113 (9.97) 

F-Value   85.92 37.87 
 

F-Value (2)    30.94  

R-Squared 0.0098 0.163 0.225 0.174 

n=474, bolded values are significant below p>0.05. (2) in comparison to Model 2 2 

Although the current direct ridership models fail to explain as much of the variation in stop level 3 
ridership as previous studies, this is to be expected given their simplicity. Unlike the models 4 
shown in Table , demographic or transit service variables are not included as independent 5 
variables. (Schlossberg et al. 2013) reported that land use explained 17% of the variance in their 6 

sample of ridership, which is comparable to the results shown here. The weak relationship 7 
between ridership and population density, together with the strong correlation with employment 8 

density highlights the need to consider the characteristics of destinations in addition to residences 9 
in transit planning. 10 
 11 

Though this analysis represents a good initial step towards a direct ridership model, there 12 
remains significant room for improvement. More nuanced measures of proximity should be 13 

considered, either through altering the parameters of the kernel density function or utilizing 14 
spatially weighted regression as in (Pulugurtha and Agurla 2012). Though demographic variables 15 

were purposely excluded in this version, their inclusion in future iterations could greatly increase 16 
the predictive power of the model. Finally, though this model attempts to reduce the endogeneity 17 

problem between transit supply and potential demand by normalizing the number of boardings 18 
and alightings per trip, this may have led to biased parameter estimates if the relationship 19 
between potential demand and service level varies significantly across the city. A more 20 

sophisticated approach might incorporate interactive terms (Cervero et al. 2010) or the two-stage 21 
method outlined in (Kerkman et al. 2015). 22 
 23 

Conclusions 24 
This paper explored the effect of density and diversity indicators on transit utilization using two 25 

approaches, namely, mode choice and direct ridership modelling. The developed mode choice 26 

models investigated the effect of density of population, employment, and enrolment on decision-27 
making in terms of mode choice. The direct ridership models considered the same indicators at 28 
the bus stop level to estimate transit ridership. Both approaches gave interesting insights into the 29 
relationship between land use and transit utilization. 30 

 31 
The mode choice models highlighted the importance of population density at transit trip origins, 32 
being of lower importance at trip destinations. In addition, the results showed that minimizing 33 
travel time/distance between activity locations increases transit modal share on the expense of 34 
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auto use. Though the mode choice models found no significant relationship with employment at 1 

the trip origin or destination, further investigation is required to determine whether this is a result 2 
of the employment distribution in Kelowna. Interestingly, the direct ridership models showed 3 
different results as they emphasized the role of employment density. Both approaches showed a 4 

highly significant relationship between enrolment density and transit utilization which is to be 5 
expected given the demographics of current transit users in the city. The results of both methods 6 
suggest that keeping the components of activity separate, rather than summing into an aggregate 7 
measure leads to significantly more explanatory models. 8 
 9 
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